

Software-Defined Secure Networks in Action

Enabling automated threat remediation without impacting business continuity

Challenge

Businesses need to continuously evolve to fight the increasingly sophisticated attacks threatening their networks. However, this focus on security is often at the expense of other important activities, triggering an on-going internal battle that pits business continuity against network security.

Solution

Businesses must take a synergistic approach that leverages network and security elements equally in an open, multivendor ecosystem with centralized policy, analytics, and management—to transform their traditional network into a secure network.

Benefits

- Better and more accurate threat detection
- Global policy management and threat analytics across different ecosystems
- Granular quarantine capabilities enabled by a greater number of security enforcement points in the network
- Rapid and automated threat remediation

Network deployments have significantly changed over the past decade. Businesses are rapidly moving to the cloud and adopting new technologies such as Internet of Things (IoT) and block chain, all of which are heavily dependent on the network.

These same enterprises are also increasing spending on security to protect new and existing infrastructure, but the breaches continue unabated. Internal records and customer information are still being stolen and sold to the highest bidder, causing irreparable damage to corporate reputations. This begs the question—are these businesses missing something very fundamental in their approach to network security?

The Challenge

A number of highly effective security technologies and solutions are available today: next-generation firewalls, sandboxing, cloud access security brokers (CASB), security event and information management (SIEM), and endpoint protection, to name a few. However, a network is only as secure as its weakest link, and without deep collaboration and synchronization between all network elements, enterprises still have a gaping security hole that leaves them vulnerable to attack. Key stakeholders are faced with the realization that their considerable investments in popular security products have still not yielded the promised protection.

Threat Propagation in an Enterprise with Typical Infrastructure and Security Products

Let's take a look at a typical enterprise with clients, endpoints, access switches, and wireless access points. A next-generation firewall connected to an anti-malware service is used at the enterprise perimeter to defend against threats in a north-south direction. Endpoint protection software may be available on clients, depending on their type or model. In the IoT, network printers, or new types of endpoints, this protection is not available.

Network Compromise Workflow

Figure 1 shows a compromised network. These breaches typically follow a predictable pattern:

1. Client attempts to download an unknown malware.
2. The file is scanned at the perimeter firewall.
3. The firewall sends the file to an anti-malware service for analysis, which notifies the firewall that the file is malware.
4. The firewall blocks the file, preventing it from being downloaded.
5. However, if the client was compromised outside the corporate network (a “non-enterprise” environment) or by manual means, it will continue to infect all other reachable hosts in the network (based on the type of threat).

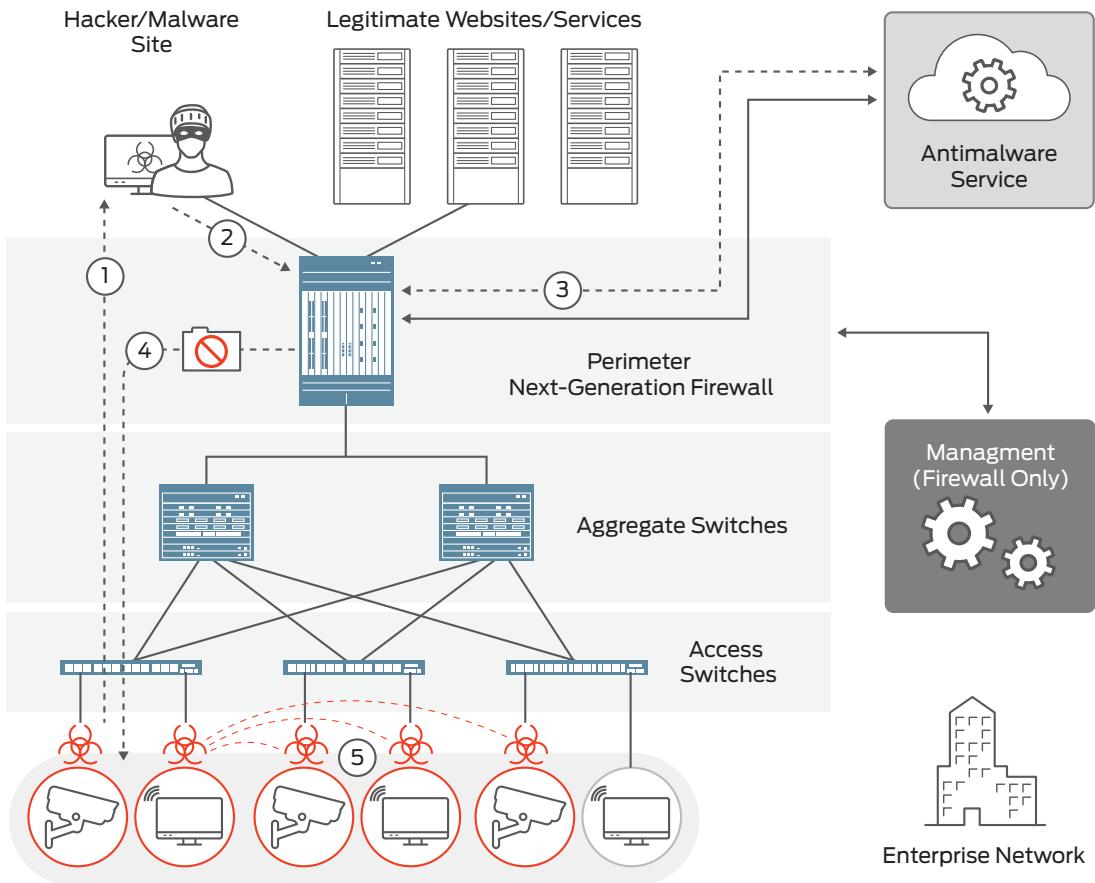


Figure 1: Network compromised in an enterprise with typical infrastructure and security products

As a result:

- Simply preventing the client from reaching outside the corporate network is ineffective and does not protect against lateral threat propagation.
- The inability of security solutions to communicate with and leverage networking components reduces visibility and restricts the number of enforcement points.
- Failure to aggregate reports of abnormal behavior from different knowledge sources such as logging servers, endpoints, and other network elements is a significant weakness in the security strategy.
- Since the security strategy is heavily firewall focused, the complexity of firewall policies can easily overwhelm security teams; this problem is amplified when the enterprise has a global footprint.

The Juniper Networks SDSN Solution

Juniper Networks® Software-Defined Secure Network (SDSN) takes enterprise security to the next level. It delivers the end-to-end network visibility enterprises need to secure the entire network, physical and virtual, by leveraging cloud economics to

find and stop threats faster. The unified SDSN platform combines policy, detection, and enforcement with a comprehensive product portfolio that centralizes and automates security.

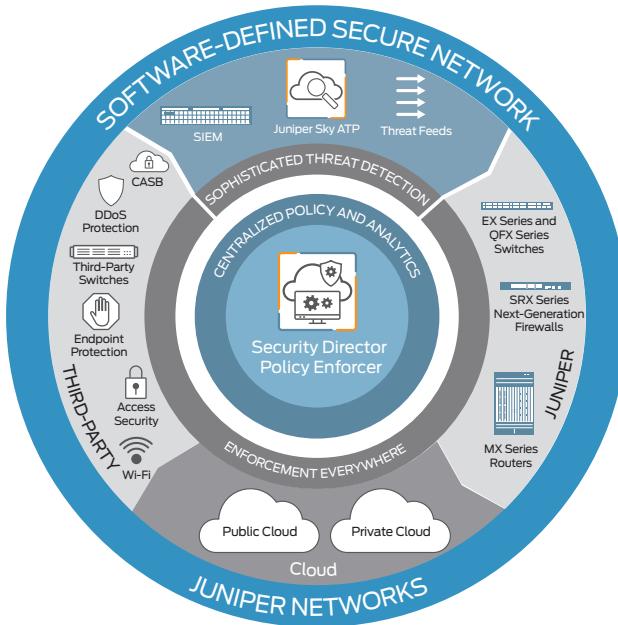


Figure 2: SDSN Building Blocks

SDSN Building Blocks

Software-Defined Secure Networks are built on the following components

1. Sophisticated threat detection engine:
 - a. Juniper Networks Sky Advanced Threat Prevention (ATP) cloud-based malware detection solution is used to accurately detect known and unknown threats.
 - b. Juniper Networks® Advanced Threat Prevention Appliance is an on-premises analytics platform that detects sophisticated threats.
 - c. Known threats are detected by consolidating threat feed information from a variety of sources—command and control (C&C) servers, GeoIP, third-party devices via REST APIs—as well as information acquired from in-house log servers.
 - d. Unknown threats are identified by Sky ATP or the ATP Appliance using technologies such as sandboxing, machine learning, and threat deception techniques.
2. Centralized management, policy, and analytics:
 - a. Juniper Networks Junos® Space Security Director delivers a scalable and responsive security management application that improves security policy administration through a single pane of glass.
 - b. Policy Enforcer, a component of Security Director, is a central intelligence module that provides:
 - Communication with multivendor network elements and security products such as next-generation firewalls to globally enforce security policies and provide analytics
 - Consolidation of threat intelligence from different sources within the premises
3. Enforce security everywhere:
 - a. SDSN leverages any network element as an enforcement point.
 - b. SDSN adopts an open, multivendor ecosystem to detect and enforce security across Juniper solutions, cloud, and third-party ecosystems.
 - c. SDSN delivers the ability to rapidly block or quarantine threats to prevent north-south or east-west threat propagation.

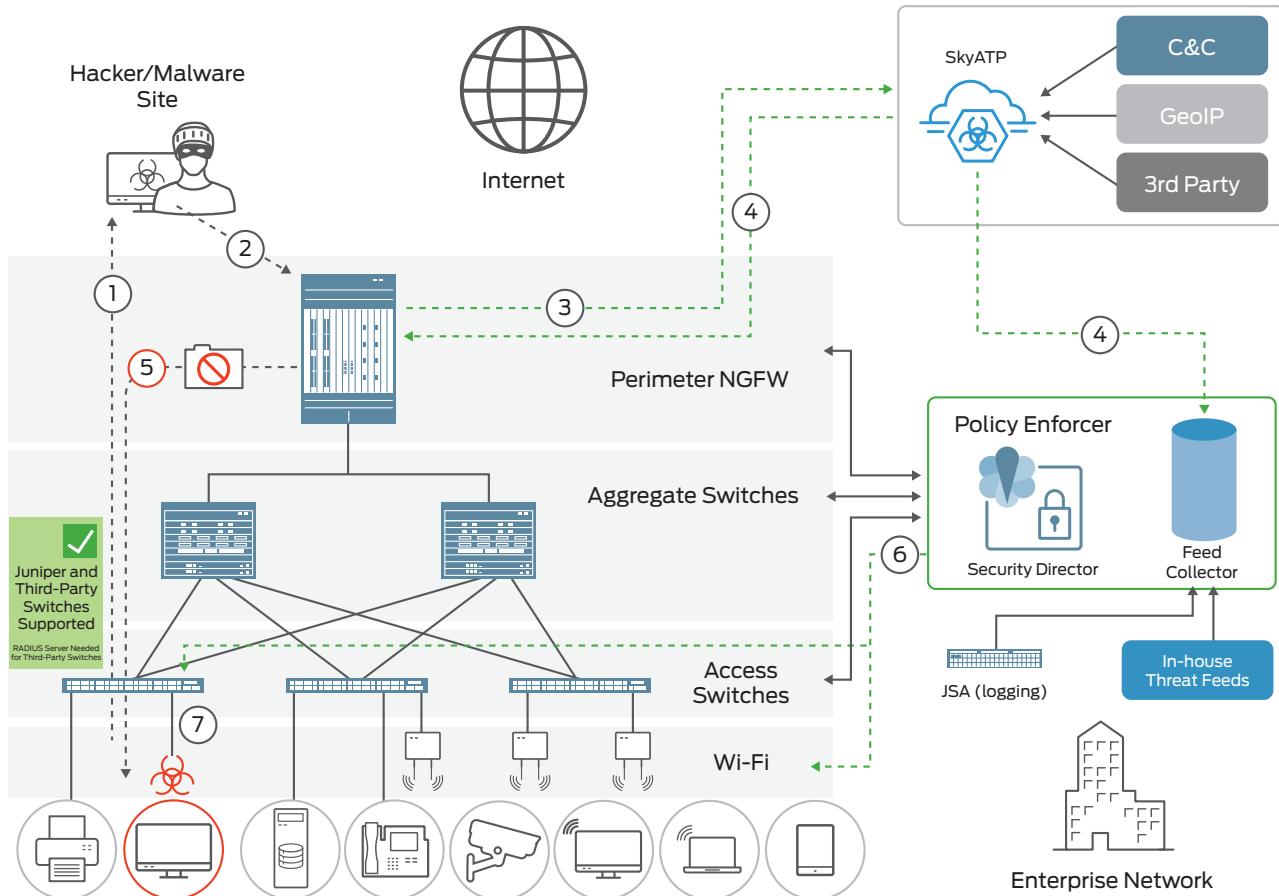


Figure 3: Secure Network Deployment with SDSN and Juniper Sky ATP

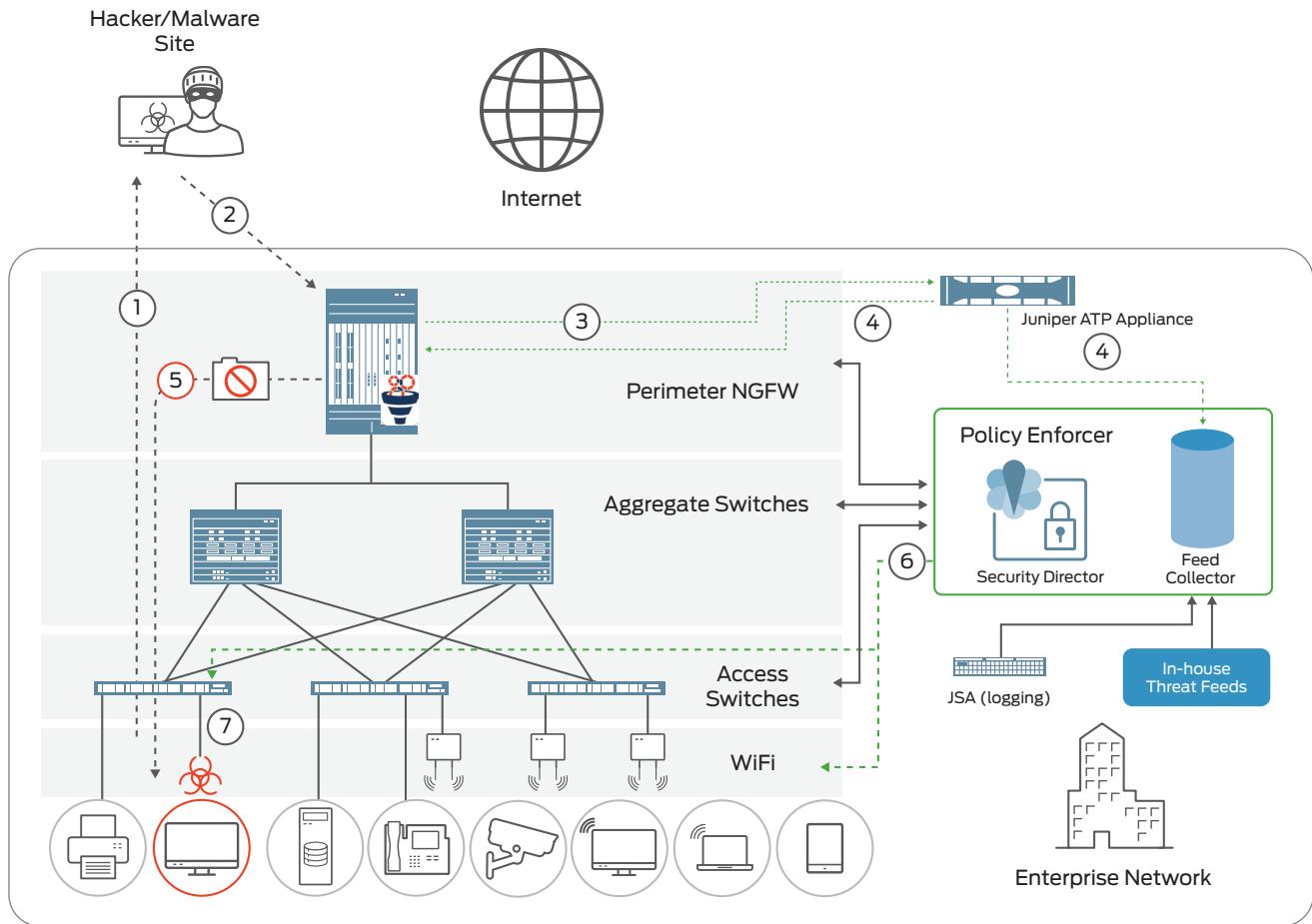


Figure 4: Secure Network Deployment with SDSN and Juniper ATP Appliance

Secure Network Deployment with SDSN

Let's take a look at a Software-Defined Secure Network that uses Juniper Networks SRX Series Services Gateways deployed as perimeter firewalls connected to Juniper Sky ATP or the Juniper ATP Appliance for anti-malware services. Security Director Policy Enforcer is the central intelligence component that communicates with different network elements, including next-generation firewalls, to globally enforce security policies.

Policy Enforcer's Feed Collector module consolidates threat feeds from the cloud and on-premises devices along with logging and in-house threat feeds. Clients/endpoints are connected to access switches or wireless access points with endpoint protection software. While IoT devices, printers, and new types of endpoints would not have this protection, Policy Enforcer can communicate with the access devices to share intelligence and enforce security where necessary.

Software-Defined Secure Networks alter the security breach landscape considerably. Here's how two different scenarios play out when a Juniper-secured network is attacked.

Workflow 1: Malware Download

1. A client attempts to download unknown malware.
2. The file is scanned by the perimeter SRX Series firewall.
3. The SRX Series firewall sends the file to Juniper Sky ATP or the ATP Appliance.
4. Juniper Sky ATP or the ATP Appliance determines the file is malware and notifies the SRX Series firewall and Policy Enforcer.
5. The SRX Series firewall blocks the file from being downloaded.
6. Policy Enforcer quarantines the host to a special VLAN (at the switch) until further investigation is possible. Policy Enforcer can also optionally disable the switch port or Wi-Fi access point that the client is connected to.
7. The targeted client is now prevented from infecting other hosts in the network. East-west and north-south malware propagation is halted. Policy Enforcer remembers the client, so even if it moves to another switch or Wi-Fi access point, Policy Enforcer recognizes the threat and blocks it from the network.

Workflow 2: Infected IoT Device

1. An infected IoT device attached to the network attempts to download a restricted file or launches an attack on a critical infrastructure.

2. The unauthorized download attempt is logged by Juniper Secure Analytics (JSA) and reported to Security Director Policy Enforcer.
3. Policy Enforcer applies an access control list/network access control rule to the affected switch port or Wi-Fi access port to quarantine the host, quickly remediating the threat.

If this attack on the network had happened in a non-SDSN network, the IoT device could have continued to access additional information; a traditional next-generation firewall would simply have prevented the IoT device from communicating outside the organization. If this were an internal attack where the attacker had physical access to the device, damage could be extremely high.

Features and Benefits

Juniper's SDSN platform delivers the following benefits.

- **Pervasive security:** The SDSN platform extends security to every layer of the network, including switches, routers, and wi-fi access points, as well as the firewall layer. By supporting different deployment models ranging from on-premises physical deployment or private clouds (such as VMware NSX and Juniper Contrail) to public clouds (such as Amazon AWS and Microsoft Azure), the SDSN platform means customers don't have to compromise in their pursuit of robust security.
- **Open, multivendor ecosystem:** Most enterprises are multivendor environments. Any security solution that requires swapping out existing infrastructure during a refresh cycle, or locks customers into a single vendor, will impose significant restrictions with respect to introducing new capabilities and adopting new trends and technologies. The SDSN platform takes an open approach, allowing enterprises to keep most of their existing networking gear while transitioning to a more secure network. By partnering with other network and security vendors, the SDSN platform offers a truly collaborative and comprehensive approach to complete network security.
- **Global policy and security management:** Junos Space Security Director with the Policy Enforcer module allows

users to enforce consistent security policies across the entire network, regardless of local or global footprint. Security administrators gain granular visibility into the system and enforcement at the network layer and in virtual environments, helping them optimize their security posture.

- **Dynamic, automated threat remediation:** The ability to quickly respond to threats is critical to network security. Threats are accurately and continuously detected by Juniper Sky ATP, the ATP Appliance, in-house feeds, and third-party sensors. Policy Enforcer automatically takes corrective action against these threats, blocking or quarantining them almost immediately at the network layer. This reduces administrative overhead and facilitates a faster, more manageable approach to security as the network expands.

Summary

Juniper Networks Software-Defined Secure Network combines network and security elements with centralized management and analytics to offer pervasive security and truly automated threat remediation. SDSN's open, multivendor ecosystem support enables enterprises to use network and security elements already in their network to protect existing investments while ensuring business continuity.

Next Steps

For more information on Juniper Networks security solutions, please visit us at www.juniper.net/us/en/products-services/security and contact your Juniper Networks representative.

About Juniper Networks

Juniper Networks brings simplicity to networking with products, solutions and services that connect the world. Through engineering innovation, we remove the constraints and complexities of networking in the cloud era to solve the toughest challenges our customers and partners face daily. At Juniper Networks, we believe that the network is a resource for sharing knowledge and human advancement that changes the world. We are committed to imagining groundbreaking ways to deliver automated, scalable and secure networks to move at the speed of business.

Corporate and Sales Headquarters
Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, CA 94089 USA
Phone: 888.JUNIPER (888.586.4737)
or +1.408.745.2000
Fax: +1.408.745.2100
www.juniper.net

APAC and EMEA Headquarters
Juniper Networks International B.V.
Boeing Avenue 240
1119 PZ Schiphol-Rijk
Amsterdam, The Netherlands
Phone: +31.0.207.125.700
Fax: +31.0.207.125.701

Copyright 2018 Juniper Networks, Inc. All rights reserved. Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners. Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

JUNIPER
NETWORKS